

Nanotechnology and Pollution Prevention: An Exploratory Example

E. Clayton Teague
Director
National Nanotechnology Coordination Office
National Science and Technology Council

Pollution Prevention Through Nanotechnology Conference Arlington, VA * September 25, 2007

Widespread Application Areas for Nanotechnology

Medicine and Health Information Technology Energy Production Storage Transmiss. Use

Materials Science Water and the Environment

Instruments

Food

GMR Hard Disk

Hydrogen Fuel Cells

Lightweight & strong matls.

Remediation methods

Tunneling microscopy

Packaging

Treatments for Cancer

Molecular Switches

Solar Cells

City-Sized Skyscrapers

"Smart" Membranes

Nano Manipulators

Pathogen Sensors

Expected to impact virtually all technological sectors as an "enabling" or "key" technology

Scope of Environmental Systems Issues

200-year Evolution of Luminous Efficacy for Various Lighting Technologies

Efficiency and Lifetime Comparisons

	Efficiency (lumens/ watt)	Expected Lifetime (hours)
Standard general service incandescent	14	1,000
Compact screw-in fluorescent	55	10,000
White light solid state light emitting diodes	70-150*	20,000 - 70,000

^{*}Cree, Inc. announced 9/13/07 R&D results of 129 lumens per watt for a cool-white LED and 99 lumens per watt for a warm-white LED

"Energy Savings Potential of Solid State Lighting in General Illumination Applications" DOE Office of Energy Efficiency and Renewable Energy - November 2003

Product Life Cycle Material Flows

T. G. Gutowski; December 2004; Handbook of Mechanical Engineering

Mfg. Incandescent Bulb - Simple

Semiconductor Manufacturing Processes - Complex, Energy Intensive

Mass of 32 MB DRAM Chip	2 grams
Total chemical inputs	72 g/chip
Total fossil fuel inputs	1,600 g/chip
Total water use	32,000 g/chip
Total elemental gas use	700 g/chip

Electrical Energy Requirements to Produce 1 Kilogram of Five Materials.

Energy
Requirements
Increase for
High Tech,
Smaller
Feature
Manufacturing
Processes

TG Gutowski, J Dahmus, A Thiriez

Proc. CIRP Conf. on Life Cycle Eng. Leuven, 2006

	Life Cycle Stage						
Environ- mental Stressor	Pre- manufacture	Product Manufacture	Product Delivery	Product Use	Disposition		
<i>Materials Choice</i>							
Energy Use							
Solid Residues							
Liquid Residues							
Gaseous Residues							

Incandescent Light Bulb

	Life Cycle Stage					
Environ- mental Stressor	Pre- manufacture	Product Manufacture	Product Delivery	Product Use	Disposition	
Materials Choice	L U	promise to mat		A poor	4	
Energy Use		* Feb 24 2007		4		
Solid Residues	3	3		1	3	
Liquid Residues	3		3	1	4	
Gaseous Residues	3	3	3	1	4	

Compact Fluorescent Light Bulb

	Life Cycle Stage						
Environ- mental Stressor	Pre- manufacture	Product Manufacture	Product Delivery	Product Use	Disposition		
Materials Choice	2 (Hg, glass, phos.)	2 (Fairly complex)	3	3	2 (Hg, phos.)		
Energy Use	2	2	3		2 (Cpx. Recy)		
Solid Residues	2		3	3	2		
Liquid Residues			3	3	3		
Gaseous Residues	2	3	3	3	3		

White Light Emitting Diode Based Light Bulb

	Life Cycle Stage						
Environ- mental Stressor	Pre- manufacture	Product Manufacture	Product Delivery	Product Use	Disposition		
Materials Choice	2 (Adv. Mtls.< <qty)< td=""><td>2 (Complex mfg.)</td><td>4</td><td></td><td>2</td></qty)<>	2 (Complex mfg.)	4		2		
Energy Use	2 (Pure Mtls.)	2	4	7	3		
Solid Residues	2		4	4	2		
Liquid Residues	2		4	4	3		
Gaseous Residues	3	3	4	4	3		

Hg Pollution From Operation & Disposal of Different Technology Light Bulbs

	CO ₂ emissions from power plant per 1000 lumen- hour of operation	Hg emissions from power plant per 1000 lumen- hour of operation	Power Plant Emissions of CO ₂ for 25.5 Mlh 100 W Incd. For 5 yrs at 10 h/day	Number of bulbs X Mass of Hg per bulb	Power Plant Emissions of Hg for 25.5 Mlh* 100 W Incd. equivalent for 5 yrs at 10 h/day	Total Hg to environment for 5 years operation
Standard general service incandescent	43 g/klh (grams per 1000 lumen- hr)	0.3 ug/klh	1100 kg	18 x 0	7.6 mg	7.6 mg
Compact screw-in fluorescent	11 g/klh	0.07 ug/klh	280 kg	2 x 4 mg of Hg	1.8 mg	9.8 mg
White light solid state light emitting diodes	6 g/klh	0.04 ug/klh	153 kg	1 x 0 Hg (bound Ga + S, Se, N)	1.0 mg	1.0 mg

^{*}Assumes 4 micrograms Hg emitted per kwh energy generated by power plant - From EPA MACT floor limits

Conclusions from Simplified LCA

- Even partial and simplified LCA is difficult requiring significant time to track down quantitative information and data
 - Each material in product needs to be tracked through lifecycle
- Very informative with often surprising results
- Nanotechnololgy offers major opportunities to:
 - Choose materials of lesser toxicity
 - Use smaller quantities of materials to achieve function
 - Simplify raw material refining and mfg. processes
 - But, may also increased energy per unit processed mass
 - Realize higher energy efficiency devices with resultant minimized environmental impact

How and Where in the Product Life Cycle Can Nanotechnology have an Impact?

	Life Cycle Stage						
Environ- mental Stressor	Pre- manufacture	Product Manufacture	Product Delivery	Product Use	Disposition and/or Recycling		
Materials Choice	Less toxic mtls Less qty. mtls	Less waste; directed self- assembly	Point of use manufacture	Engineered to be safe	Engineered for bio compatibility		
Energy Use	Less waste of energy	Less waste of energy and mtls	Compact realization of function	High efficiency of realized function	u		
Solid Residues	Less waste						
Liquid Residues	Less waste						
Gaseous Residues	Less waste						